

MU110-8R(K)

Módulo de salidas digitales 8 canales

Guía del Usuario

MU110-8R(K)_2019.08_0296_ES © Todos los derechos reservados Sujeto a cambios técnicos y erratas

Contentido

1.	D	Descripción	2
	1.1	1 Funcionamiento	2
	1.2	2 Red RS485	2
	1.3	3 Diseño	2
2.	E	Especificaciones	4
	2.1	1 Guía para el pedido	4
	2.2	2 Especificaciones técnicas	4
	2.3	3 Condiciones ambientales	4
3.	S	Seguridad	5
	3.1	1 Uso permitido	5
4.	In	InstalaciónInstalación	6
	4.1	1 Cableado	6
	4.	4.1.1 Protección de escritura en la memoria permanente vía Hardware	6
	4.	4.1.2 Salidas	7
5.	C	Configuración	9
6.	0	Operación	11
	6.1	1 Prueba de funcionamiento	11
	6.2	2 Control individual en modo PWM	11
	6.3	3 Control grupal	12
	6.4	4 Condición de falla	12
	6.5	5 Direccionamiento de memoria	12
7.	R	Restauración a valor de fábrica	14
8.	M	Mantenimiento	16
9.	Tı	Transporte y almacenamiento	17
10	. C	Contenido del paquete de entrega	18
Αį	oéno	ndice A. Dimensiones	19

1. Descripción

1.1 Funcionamiento

El módulo de salidas digitales MU110-24.8R(K) es un módulo de extensión con 8 salidas digitales. El módulo posee las siguientes funciones:

- Conectar equipos periféricos con salidas digitales.
- Control de salida utilizando la red Modbus.
- Modulación por ancho de pulso. (PWM, ver sección 6.3).
- Diagnóstico del estado de red RS485.
- Generación de señales de fallo y alarma según configuración.
- Esclavo en red Modbus.

El módulo soporta los protocolos Modbus RTU y Modbus ASCII con identificación automática de protocolo.

El módulo debe ser configurado utilizando el software "M110 Configurator" a través de un adaptador de interfaz RS485-USB IC4 (no incluido en la entrega). La versión más reciente del software de configuración se encuentra disponible para descargar en la página web www.akytec.de.

1.2 Red RS485

Los módulos de I/O de la serie Mx110 utilizan para el intercambio de datos el estándar RS485. La interfaz serial RS485 está basada en una tecnología de dos hilos y el modo half-duplex. Los protocolos Modbus RTU, Modbus ASCII y akytec son soportados. La red posee un dispositivo maestro y puede tener hasta 32 dispositivos esclavos. La longitud máxima de la red es 1200 metros. El número de dispositivos esclavos y la longitud de la red puede ser extendida si se utiliza un repetidor de interfaz RS485.

Los dispositivos son conectados en la red utilizando una topología linear (bus). Esto significa que la conexión se realiza desde el primer dispositivo hacia el segundo, del segundo al tercero, etc. Las topologías tipo estrella o multipunto no están permitidas.

Al extremo de cada bus siempre se presentan reflexiones en la línea (primer y último nodo). Mientrás mayor sea la velocidad de transmisión, mayor es la reflexión. Una resistencia de final de línea es necesaria para reducir dicho fenómeno. A nivel práctico se recomieda utilizar resistencias de final de línea de 150 ohmnios.

El módulo puede ser configurado solo como esclavo. El maestro puede ser un PLC, una PC con un SCADA o un panel de control.

1.3 Diseño

Carcasa: Plástica, gris, para montaje en riel DIN o en pared.
Bloques de terminales: 2 terminales tipo Plug-in con 20 terminales de tornillo.

LED "POWER": Indicador de tensión de alimentación.

LED "RS-485": Parpadea cuando hay intercambio de datos vía puerto

serial

LED "FAULT"
 Se enciende cuando el intercambio de datos en el puerto

serial se interrumpe.

8 LEDs "OUTPUTS"
 Se enciende cuando la salida correspondiente se activa

Fig. 1.1 Vista frontal del módulo MU110-8R

Los esquemas dimensionales se encuentran en el apéndice A.

Bajo la carcasa en el panel frontal del módulo se encuentran tres interruptores (dip switch) (ver Fig. 4.1) con las siguientes funciones:

- X1 Protección de escritura en la memoria permanente vía Hardware (ver sección 4.1.1).
- X2 Ajustes de fábrica (ver sección 7).
- X3 Función de servicio.

Los tres interruptores se encuentran apagados por defecto (desde fábrica).

2. Especificaciones

2.1 Guía para el pedido

El módulo MU110-8R(K) se encuentra disponible en dos variantes según el tipo de salida requerido.

MU116-24.8x Tipo de salida

Tipo de salida:

R Salida relé

K Salida transistor NPN

2.2 Especificaciones técnicas

Tabla 2.1 Especificaciones técnicas generales

Tensión de alimentación		24 (2028) V DC
Potencia consumida, má	6 W	
Entradas	Digitales	-
	Analógicas	-
Salidas	Digitales	8
	Analógicas	-
Interfaz RS485	Terminales	D+, D-
	Protocolos	Modbus RTU / ASCII, akYtec
	Velocidad de transmisión	2.4115.2 kbit/s
	Bits de datos	7, 8
	Paridad	par, impar, ninguno
	Bit de parada	1, 2
Dimensiones		63 x 110 x 75 mm
Peso		apróx. 300 g
Material		plástico

Tabla 2.2 Datos técnicos de las salidas

Propiedad	MU110-8R	MU110-8K
Aislamiento galvánico	Relé	Transistor NPN
Carga permisible	4 A. 250 Vac, cosφ >0.4 or 30 Vdc	400 mA, 60 Vdc

2.3 Condiciones ambientales

El dispositivo está diseñado para un enfriamiento por convección natural, lo cual debe tenerse en cuenta al elegir el lugar de instalación.

Las siguientes condiciones ambientales deben existir alrededor del equipo:

- ambiente limpio, seco y controlado, con un bajo nivel de polvo.
- zonas cerradas no peligrosas, libres de gases corrosivos o inflamables.

Tabla 2.3 Condiciones ambientales

Condiciones	Rango permitido
Temperatura de trabajo	-20+55°C
Temperatura de almacenamiento	-25+55°C
Humedad relativa	hasta 80% (a +25°C, sin condensado)
Protección IP	IP20
Altitud	hasta 2000 m sobre el nivel del mar

3. Seguridad

A continuación se detalla la explicación de los símbolos y palabras claves utilizadas:

 \triangle

PELIGRO

PELIGRO indica una situación de riesgo inminente la cual, de no ser evitada, puede resultar en heridas graves o en la muerte.

ADVERTENCIA

ADVERTENCIA indica una situación de riesgo potencial la cual, de no ser evitada, puede resultar en heridas graves o en la muerte.

PRECAUCIÓN

PRECAUCIÓN indica una situación de riesgo potencial la cual, de no ser evitada, puede resultar en heridas menores o moderadas.

AVISO

AVISO indica una situación de riesgo potencial la cual, de no ser evitada, puede resultar en daños al producto y a los objetos adyacentes.

3.1 Uso permitido

El equipo ha sido diseñado y construido únicamente para el uso descrito en el presente manual y solo puede ser utilizado de acuerdo al mismo. Las especificaciones técnicas contenidas en este manual deben ser consideradas.

El equipo solo puede ser operado si está instalado correctamente.

Uso no permitido

No respetar las instrucciones de seguridad puede provocar el deterioro del equipo y lesionar al usuario. Tome en cuenta especialmente los siguientes casos:

- No se autoriza utilizar el módulo en equipos médicos que se empleen para mantener la vida o la salud del hombre, controlando o haciendo cualquier efecto sobre las mismas.
- El módulo no debe ser utilizado si las condiciones ambientales (temperatura, humedad, etc.) están fuera de los límites indicados en esta guía.
- No se autoriza utilizar el instrumento en ambientes que contengan sustancias químicamente activas.

4. Instalación

ADVERTENCIA

Instalación inapropiada

La instalación inapropiada del equipo puede causar heridas serias o leves, así como daños al equipo.

La instalación debe ser realiza por personal cualificado.

- El equipo está diseñado para ser instalado en un tablero eléctrico sobre un riel DIN o para ser instalado en pared. Los dimensionales se encuentran en el apéndice A.
- La instalación del módulo debe realizarse en un ambiente limpio, seco y controlado.
 Para mayores detalles ver la sección 2.3.
- El módulo está diseñado para un enfriamiento por convección. Esto debe ser considerado al seleccionar el lugar de instalación.

4.1 Cableado

Voltaje peligroso

Una descarga eléctrica puede causar la muerte o heridas graves.

Todas las conexiones eléctricas deben ser realizadas por personal eléctrico calificado.

Asegúrese que la tensión de alimentación corresponde al voltaje indicado en la superficie del equipo!

Asegúrese que el equipo posee una tensión de alimentación independiente así como una protección eléctrica independiente (fusible).

AVISO

Encienda la fuente de alimentación después de haber realizado el cableado del equipo por completo.

- Los terminales de conexión se muestran en la fig. 4.1, la designación de los terminales se indica en la Tabla 4.1.
- Las entradas deben ser cableadas según las figuras 4.2 4.3.
- Conecte la tensión de alimentación a los terminales 24V y 0V.
- La sección máxima permitida del cable de alimentación es 1.5 mm²

Seguridad - Compatibilidad electromagnética.

AVISO

Los cables de transmisión de señales deben ser canalizados de forma independiente de los cables de tensión, utilizado cables apantallados.

Utilice cables apantallados para la transmisión de señales.

El aterramiento del gabinete eléctrico es recomendado para una mejor inmunidad electromagnética.

- Conecte los cables de comunicación RS485 a los terminales D+ y D-.
- Use un cable de par trenzado para la conexión RS485. La longitud del cableado de la red no debe superar los 1200 m.

4.1.1 Protección de escritura en la memoria permanente vía Hardware

Los datos almacenados en la memoria permanente pueden perderse debido a fuertes interferencias electromagnéticas o alguna condición similar.

El puente X1 (protección de escritura vía hardware) evita la perdida de datos. Los siguientes pasos deben seguirse para activar esta opción:

Apagar la fuente de alimentación.

- Abrir la tapa del panel frontal del módulo (ver fig. 4.1).
- Colocar el puente X1

Debe tenerse en consideración las siguientes observaciones:

Para cambiar la configuración de los parámetros, el puente X1 debe ser removido.

4.1.2 Salidas

- El módulo MU110-8R tiene 8 salidas de relé y el módulo MU110-8K tiene 8 salidas tipo transistor NPN.
- Las salidas pueden ser controladas vía Modbus RS485.
- Cada salida puede utilizar el modo PWM (Modulación de ancho de pulso).
- Los datos técnicos de las salidas se muestran en la tabla 2.2

Asegúrese que el voltaje y la corriente en las salidas no exceda los valores màximos, incluso de manera instantánea.

Si el voltaje se eleva, especialmente cuando está conectada una carga inductiva (relé, bobina, etc.) mantenga limitados los picos de voltajes a través de medidas preventivos.

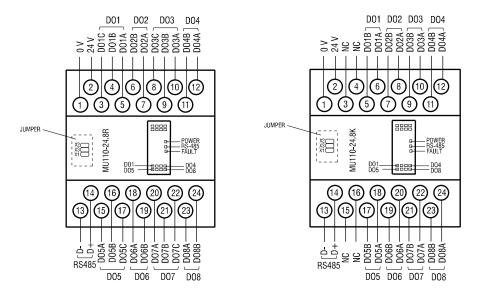


Fig. 4.1 Conexiones eléctricas del MU110-24.8R y MU110-24.8K

Table 4.1 Asignación de terminales

No	Asignación	Descripción	No	Asignación	Descripción
1	0V	Tensión de	13	D-	RS485 D-
2	24V	alimentación	14	D+	RS485 D+
3	DO1C	DO1 NO	15	DO5A	DO5 NO
4	DO1B	DO1 CO	16	DO5B	DO5 CO
5	DO1A	DO1 NC	17	DO5C	DO5 NC
6	DO2B	DO2 NO	18	DO6A	DO6 NO
7	DO2A	DOZ NO	19	DO6B	DOG NO
8	DO3C	DO3 NO	20	DO7A	DO7 NO
9	DO3B	DO3 CO	21	DO7B	DO7 CO
10	DO3A	DO3 NC	22	DO7C	DO7 NC
11	DO4B	DO4 NO	23	DO8A	DO8 NO
12	DO4A	DO4 NO	24	DO8B	טאו פטע

AVISO

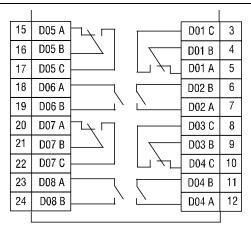


Fig. 4.2 Salidas MU110-8R

Tabla 4.2 Asignación de terminales MU110-24.8K

No	Asignación	Descripción	No	Asignación	Descripción
1	0V	Tensión de	13	D-	RS485 D-
2	24V	alimentación	14	D+	RS485 D+
3	Sin conexión	NC	15	Sin conexión	NC
4	Sin conexión	NC	16	Sin conexión	NC
5	DO1B	DO1 NO	17	DO5B	DO5 NO
6	DO1A	DOT NO	18	DO5A	DO3 NO
7	DO2B	DO2 NO	19	DO6B	DO6 NO
8	DO2A	DOZ NO	20	DO6A	DO0 NO
9	DO3B	DO3 NO	21	DO7B	DO7 NO
10	DO3A	טאו פטע	22	DO7A	טאו זיטט
11	DO4B	DO4 NO	23	DO8B	DO0 NO
12	DO4A	DO4 NO	24	DO8A	DO8 NO

Si existe una carga inductiva en una salida tipo transistor NPN, se recomienda conectar un diodo de protección (rueda libre, 100 V, 1 A) para proteger al transistor (ver Fig. 4.3).

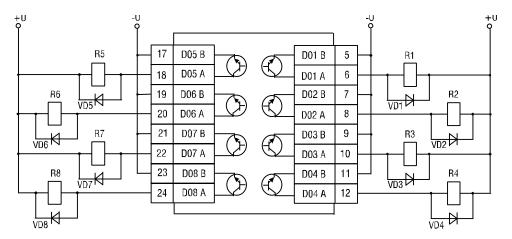


Fig. 4.3 Salidas MU110-8K

5. Configuración

AVISO

Antes de comenzar

Antes de encender el equipo, asegúrese que ha permanecido a la temperatura ambiente especificada (-20 ... 55 °C) durante al menos 30 minutos.

La herramienta de configuración "M110 Configurator" permite visualizar, editar y guardar los parámetros del equipo. La lista completa de parámetros se muestra en la tabla 5.1.

El modulo debe ser configurado para ser utilizado en la red RS485. Proceda de la siguiente manera:

- Instale el software de configuración "M110 Configurator" en la PC.
- Conecte el módulo a la interfaz USB a través del adaptador IC4 de RS485-USB (no incluido en la entrega).
- Conecte la tensión de alimentación de 24 V a los terminales 24V/0V.
- Encienda el equipo.
- Inicie el "M110 Configurator".

Si los valores predeterminados de fábrica no han sido modificados, entonces la conexión con el módulo se establecerá automáticamente. El módulo será automaticamente reconocido, se leerán los parámetros de configuración y una ventana con los datos de configuración correspondientes aparecerá.

Si esto no ocurre, los parametros de red del configuración deben ser modificados para ajustarse a los parámetros del módulo

Tabla 5.1 Parámetros de configuración

Nombre	Parámetro	Valor valido	Significado	Valor por defecto					
	Parámetros comunes								
dev	Dispositivo	hasta 8 carac	cteres	MU110-8					
ver	Versión Firmware	hasta 8 carac	cteres	Fabricante					
	Parámo	etros de com	unicación						
		0	2.4						
		1	4.8						
		2	9.6						
	Velocidad de	3	14.4						
bPS	transmisión, kbit/s	4	19.2	9.6					
	transmision, kbit/s	5	28.8						
		6	38.4						
		7	57.6						
		8	115.2						
l En	Dita da datas *	0	7	0					
LEn	Bits de datos *	1	8	- 8					
		0	ninguno						
PrtY	Paridad *	1	par	ninguno					
		2	impar						
Sbit	Dit de perede *	0	1	4					
Sbit	Bit de parada *	1	2	1					
A.Len	Dita da dinacción	0	8	0					
A.Len	Bits de dirección	1	11	8					
Addr	Dirección del equipo	1	247	16					
t.out	Tiempo de espera, s	()600	0					
Rs.dL	Tiempo de respuesta,		045	2					
	ms		1: -1 -						
TUDD		rámetros de		4					
THDP	Periodo del PWM, s	1900	1900	1					
O.ALr	Estado de falla segura, %	0100	0100	0					

^{*} Combinaciones no válidas en parámetros de configuración:

Configuración

- prty=0; sbit=0; len=0
- prty=1; sbit=1; len=1
- prty=2; sbit=1; len=1

6. Operación

En el modo de operación el módulo es controlado por un dispositivo maestro en la red Modbus. El dispositivo puede funcionar de diferentes maneras:

- Control individual en modo PWM (ver sección 6.2)
- Control grupal (ver sección 6.3)

Las siguientes funciones Modbus se encuentran disponibles: 03, 04 para lectura y 15, 16 para escritura.

6.1 Prueba de funcionamiento

Para comprobar el correcto funcionamiento del módulo MU110-8R(K) se deben seguir los siguientes pasos:

- Conectar el módulo al puerto USB del computador utilizando un adaptador USB/RS485.
- Ejecutar el configurador "M110 Configurator" en la PC.
- Si la conexión no se establece automáticamente, significa que los parámetros de comunicación han sido modificados.
- Elegir en el menú la opción "Device -> I/O status...". Una nueva ventana "Output Status" se abrirá.
- Para cada salida el ciclo de trabajo del PWM (duty cycle, duración de pulso por periodo) puede ser establecido entre 0 y 1, de esta manera la salida es apagada y encendida a través de la generación de un tren de pulsos continuos.
- Adicionalmente la resistencia de salida del MU110-8R puede ser medida con un ohmímetro.
- Resistencia máxima en salidas cerradas 1 ohm.
- Resistencia mínima en salidas abiertas 2 Mohm.
- Si hay desviaciones o fallas en el funcionamiento, por favor contactar al servicio técnico de akYtec GmbH.

6.2 Control individual en modo PWM

Utilizando la modulación por ancho de pulso el valor promedio del voltaje puede ser modificado. Los pulsos con un periodo (THDP) y un ciclo de trabajo (duty cycle, duración de pulso por periodo) especificados a través de los parámetros de salida serán generados de manera secuencial en la salida seleccionada.

Estados posibles de salida dependiendo el ciclo de trabajo son mostrados en la tabla 6.1. La función Modbus 16 es utilizada para transferir el valor del ciclo de trabajo al modulo.

Tabla 6.1 Modulación por ancho de banda

Ciclo de	Estado de la salida	
Configuración Comando Modbus		Estado de la Salida
0	0	0
1	1000	1
entre 0 y 1	entre 0 y 1000	Los pulsos tendrán un ciclo de trabajo entre 0 y 100%

— El configurador no utiliza el protocolo Modbus, utilizando en su lugar un protocolo de comunicación interno. Por esta razón, el rango de valores en la configuración y en el comando Modbus puede presentar diferencias. Por ejemplo, el ciclo de trabajo debe ser establecido en 1 para el activación de la salida DO1 durante una prueba de funcionamiento. En un comando Modbus el ciclo de trabajo debe ser escrito como 0001 en el registro 0000.

El periodo del PWM (THDP) se establece normalmente durante la configuración.
 También es posible establecerlo utilizando un comando Modbus.

Memoria permanente.

AVISO

Como la memoria permanente no es ilimitadamente reescribible (aproximadamente 10⁶ veces), no es aconsejable cambiar los parámetros "TDHP (periodo PWM) y "O.Alr" (estado de falla segura) por medio de comandos Modbus de forma frecuencia, como por ejemplo, según el ciclo de trabajo del PWM.

 El periodo mínimo para la modulación por ancho de pulso es 50 ms y no puede ser modificado.

6.3 Control grupal

El control grupal es realizado a través de la función Modbus 16. De esta manera la máscara de bits de salida (ver tabla 6.2) debe ser escrita en el registro 50 (0x0032). Así se pueden controlar todas las salidas de manera simultánea. El bit 0 corresponde a la salida 1.

Con la transferencia de la máscara de bits al dispositivo se detiene la generación de pulsos y las salidas se establecen según los datos de la máscara.

6.4 Condición de falla

Si el intercambio de datos a través del puerto serial se interrumpe (por ejemplo: no se recibe una solicitud del dispositivo maestro durante el tiempo especificado en el parámetro **t.out**), todas las salidas se establecen en el estado de falla segura. La "Condición de falla" es una combinación de todos los valores de falla segura de los ciclos de trabajo del PWM, que se establece en el parámetro **O.ALr** (estado de falla segura) para cada salida. Si se activa la condición, sucede lo siguiente:

- El LED FAULT (falla) comienza a parpadear.
- Una vez se recibe la solicitud del dispositivo maestro, el display se actualiza.
- Las salidas se mantienen en el estado de falla segura hasta que un comando recibido del dispositivo maestro cambie el estado de la salida.
- Si el parámetro t.out se establece en 0, la condición de falla no estará definida.
- Los parámetros t.out y O.ALr puede ser establecidos durante la configuración o durante la operación. El aviso "Memoria permanente" de la sección 6.2 debe ser considerado.

6.5 Direccionamiento de memoria

Todas las variables y parámetros que se encuentran en la tabla 6.2 son tipo UNIT16.

R- variable o parámetro con acceso de lectura

W – variable o parámetro con acceso de escritura.

Tabla 6.2 Registros Modbus

		Val		Dirección		
Parámetro	Unidad	Configura- ción	Comando Modbus	Acceso	hex	dec
Ciclo de trabajo DO1	-	01	01000	RW	0000	0000
Ciclo de trabajo DO2	-	01	01000	RW	0001	0001
Ciclo de trabajo DO	-	01	01000	RW		
Ciclo de trabajo DO8	-	01	01000	RW	0007	0007
Estado falla segura (O.ALr) DO1	-	0100	01000	RW	0010	0016

		Valor			Dirección	
Parámetro	Unidad	Configura- ción	Comando Modbus	Acceso	hex	dec
Estado falla segura (O.ALr) DO2	-	0100	01000	RW	0011	0017
Estado falla segura (O.ALr) DO	-	0100	01000	RW		
Estado falla segura (O.ALr) DO8	-	0100	01000	RW	0017	0023
Periodo PWM (THPD) DO1	S	1900	1900	RW	0020	0032
Periodo PWM (THPD) DO2	S	1900	1900	RW	0021	0033
Periodo PWM (THPD) DO	S	1900	1900	RW		
Periodo PWM (THPD) DO8	S	1900	1900	RW	0027	0039
Tiempo de espera (t.out)	S	0600	0600	RW	0030	0048
Máscara de bit de salida	-	-	065535	RW	0032	0050

Tabla 6.3 Estados de salida binario con direccionamiento Modbus según función 15

Salida	Access	Direct	cción	
Salida	Acceso	hex	dec	
1	W	0000	0000	
2	W	0001	0001	
	W			
8	W	0007	0007	

7. Restauración a valor de fábrica

Si la comunicación entre la PC y el módulo no puede ser establecida y los valores de los parámetros de comunicación son desconocidos, se deben reestablecer los ajustes de fábrica para los parámetros de comunicación. Se debe proceder de la siguiente manera:

- Apagar el módulo.
- Retirar la tapa frontal del módulo.
- Colocar el puente en X2. Ahora el módulo operara con los valores de comunicación por defecto. Los ajustes del usuario se mantienen guardados.
- Encender el módulo.

Voltaje peligroso.

Una descarga eléctrica puede causar daños serios e incluso la muerte.

 \triangle

ADVERTENCIA ¡El voltaje de algunos componentes del circuito interno puede ser peligroso! El contacto directo con el circuito o la penetración de cuerpos extraños dentro del módulo debe ser evitado.

- Iniciar el software de configuración 'M110 Configurator'.
- En la ventana 'Conexión al dispositivo' establecer los parámetros por defecto (ver Tabla 7.1) o hacer click en el botón 'Use factory settings' (ver Fig. 7.1)

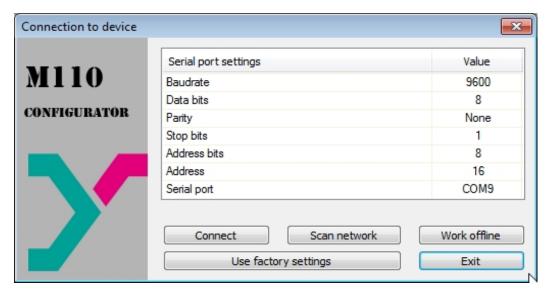


Fig. 7.1 Ventana de inicio del software de configuración

- Presionar el botón 'Connect'. La conexión se establecerá con los parámetros de comunicación por defecto.
- La ventana principal del configurador se abrirá. Los parámetros de comunicación almacenados en el módulo podrán ser leídos. (ver Fig. 7.2)
- Abrir la carpeta 'Network parameters' en el árbol de configuración y tomar nota de los valores de los parámetros de comunicación.
- Cerrar el configurador.
- Apagar el módulo.

Restauración a valor de fábrica

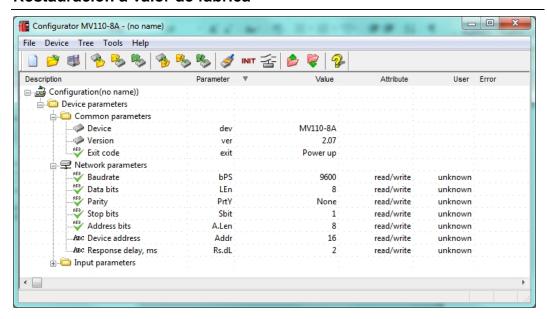


Fig. 7.2 Ventana principal del "M110 Configurator"

- Retire el puente X2.
- Cerrar la tapa cobertora.
- Encender el módulo.
- Iniciar el configurador.
- Ingresar los valores de los parámetros de configuración tomados.
- Presionar el botón 'Connect'.

El módulo se encuentra listo para operación.

Tabla 7.1 Valores predeterminados (por defecto) de parámetros de comunicación

Parámetro	Nombre	Valor por defecto
Velocidad de transmisión	bPS	9600
Bits de datos	LEn	8
Paridad	PrtY	ninguno
Bits de parada	Sbit	1
Bits de dirección	A.Len	8
Dirección	Addr	16
Retardo de respuesta, ms	Rs.dL	2

Mantenimiento

8. Mantenimiento

El mantenimiento del equipo incluye:

- Limpieza de la carcasa y los terminales del equipo de polvo, suciedad y cuerpos ajenos.
- Revisar los elementos de fijación del equipo
- Revisión del cableado (cables de conexión, elementos de fijación, daño mecánico)

La limpieza del instrumento debe efectuarse únicamente con una servilleta húmeda. No utilizar detergentes abrasivos ni aquellos que contengan solventes. La información de seguridad descrita en la sección 3 debe ser tomada en consideración durante las acciones de mantenimiento.

9. Transporte y almacenamiento

El equipo y sus accesorios deben ser empacados de manera que se encuentren protegidos contra golpes y vibraciones.

El empaque original provee una protección óptima.

Si el equipo no se emplea inmediatamente después de su entrega, es necesario garantizar su almacenamiento seguro en un lugar protegido. El equipo no debe ser almacenado en lugares con atmósferas que contengan sustancias químicamente activas.

La temperatura de almacenamiento debe encontrarse entre -25... +55 °C.

► AVISO

El instrumento puede sufrir daños durante su transporte.

Verifique la integridad del equipo tanto por posibles deterioros durante el transporte como por su completa entrega (accesorios)!

Avise inmediatamente al servicio de entrega así como a la empresa akYtec GmbH en caso de cualquier eventualidad durante el transporte!

Contenido del paquete de entrega

10. Contenido del paquete de entrega

_	Módulo MU110-8R(K)	1
_	Guía corta	1

Apéndice A. Dimensiones

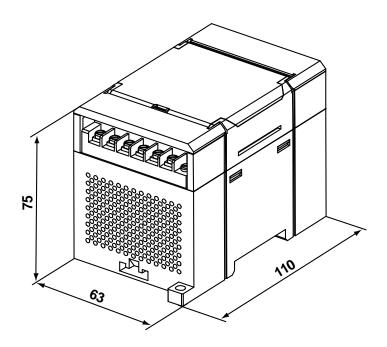


Fig. A.1 Dimensiones externas

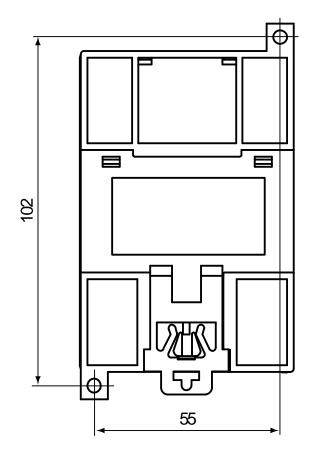


Fig. A.2 Dimensiones para montaje en pared

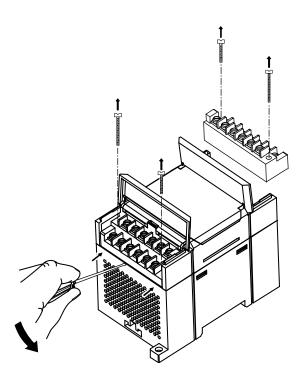


Fig. A.3 Reemplazo de terminales de conexión